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2 1 INTRODUC"YON

1 Introduction

This paper presents the design of PROTEUS, a sin.ulator for MIMD multiprocessors. PROTEUS is -.n

execution-driven--simulator [OMM+88]; it multiplexes a single processor among the various activitie

in a simulated parallel machine to provide accurate infc:mation about the -timing and behavior of an

application and the underlying simulated architecture. PROTEUS is fast, accurate, and flexible: it is

one to two orders-of magnitude faster than comparable simulators, it can reproduce results from real

multiprocessors, and it is easily configured to simulate a wide range of MIMD architectures. PROTEUS'

modular structure-allows users to tradeoff accuracy and performance: users pay for accuracy only when

and where they need it. The structure also allows easy customization of the architecture. Finally, PRO-

TEUS provides repeatability and nonintrusive monitoring and debugging, which result in a development

environment superior to those available on real multiprocessorg..

We believe that simulation has a valuable role to play at all levels of the design and analysis of

multiprocessor systems, from architectirs to runtime systems to algorithms and applications. Many

projects have used simulation during the development of new architectures to guide the design. We

believe that simulation has an equally vital role to play in the development of software systems for

multiprocessors.

There are two alternatives to simulation: analytical modeling and using real machines. Multiproces-

sor systems are sufficiently complex that analytical modeling is difficult. On the other hand, using a real

machine to test, debug, and tune a program is problematic. In contrast, simulation allows nonintrusive

monitoring and debugging, and also makes it easy to repeat executions so that differint phei.omena in

an execution can be studied at a variety of levels of detail.' Another important advantage of simulation

is flexibility. Using-a simulator such as PROTEUS, we can study the behavior of a program on many dif-

ferent architectures. For example, alternative memory syete.ns can be simulated, giving insight into the

interactions among applications, compilers, and cache-management techniques. Similarly, the number

of processors can be varied, giving insight into the scalability of a program or algorithm (perhaps well

beyond the limits imposed by real machines).

For all its advantages, simulation has potential problems in two areas-speed and accuracy - that can

make it less useful. First, simulators are often slow, making it impossiblc to run latg t xperiments or sets

of experiments. Second, simulators are often inaccurate, making it difficult to draw useful conclusions

from the results of a simulation. PROTEUS is an execution-driven simulator that interleaves the execution

of an application program with the simulation of the underlying architecture; this makes i. possible to

achieve very high accuracy. In addition, PROTEUS avoids interpreting user application code whenever

'Some parallel debuggers support repeatability-e.g., Instant Replay [LM86]-but at the cost of maintaining huge trace
fiics and of introducing a significant probe cffect [Gai86].
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possible, thus removing the overhead of interpretation for most instructions. PROTEUS is also designed

so that-the entire simulation system, including the application program and the network and memory

simulators, runs in a single address-space. These and other factors discussed in Section 6-result in a

performance improvement of one to two orders of magnitude when compared to other simdlators with

comparable flexibility such as Tango [DGH91].

Another important feature of PROTEUS is the ability it provides the user to control the level of

accuracy of the simulation. In general, there is a tradeoff between accuracy and performance: a more

accurate simulation requires more time. Since the level of accuracy desired and the amount of informa-

tion needed from a simulation depend on the application, PROTEUS provides users with unprecedented

flexibility in choosing or customizing the level of accuracy in the network and memory simulations. The

user can also control what monitoring data is produced, both for system-level data (e.g., shared-memory

traces) and user-level data (e.g., the time spent in a code section, or the size of a data structure). As

discussed in more detail below, changing the level of accuracy of the simulation makes a large difference

in the running time. For users who need large simulations or sets cF simulations, it is important that

they be able to pay only for the accuracy they need.

PROTEUS was originally designed for evaluating language, compiler, and runtime syrtem mechanisms

to support portability; thus, flexibility, accuracy, and performance are all important. We have also used

it for algorithmic and architectural studies, including concurrent search trees and network and cache

research [CBDW91]. In general, PROTEUS is an excellent development platform for parallel software: it

supports testing and debugging, performance evaluation and tuning, and graphical output.

Section 2 provides an overview of the simulator, Section 3 discusses PROTEUS' modular structure, and

Section 4 describes the use of direct execution and augmentation. Support for debuggirg, monitoring

and graphics is discussed in Section 5, while Section 6 evaluates overall system performance. Section 7

presents evidence on the- accuracy of PROTEUS: it compares simulation results to published empirical

data from an nCUBE multiprocessor. Finally, Section 8 describes related work and Section 9 presents

our conclusions.

2 Overview

PROIEUS is not actually a simulator, rather, it is an simulation engine that combines with architecture-

specific modules and user applications to create a simulator. The resulting executable provides high-

performance simulation of the user's application on the target architecture. This section presents a brief

overview of PRO MIS, including the basic multiprocessor model, the programming language, and the

steps involved in building and using PROTEUS simulators.
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PROTEUS simulates MIMD multiprocessors inwhich independent processor nodes are connected via

an interconnection medium. The -interconnectioxvmedium can-be either a bus, a direct network-such as

a k-ary n-cube, or an indirect network, such as a-butterfly. Each processor node consists of a processor,

a network chip, a cache chip, and-memory. Conceptually, the processor is a generic sequential processor

exteaded with instructions for network access- and cache coherence. The network chip interfaces the

processor with the interconnection medium. The cache chip, which is optional, handles cache coherence

and works with -the -network chip for remote-memory accesses.

The memory at each node is- divided- into two sections, a- shared section that maps to part of a

global address space, and a private section that-is not accessible from the interconnection medium. For

distributed-memory machines, the size of the shared section is zero. PROTEUS can simulate- hardware

cache coherence- for global memory- and provides-primitives for software coherence.

Users write applications in-a superset of C. The extensions include keywords for declaring that data

ieside in shared memory and for controlling the placement of data structures. PROTEUS provides library

routines for message passing, thread management, memory management, and data collection.

There are four steps in the creation- and use- of a PROTEUS-simulator. First, the user specifies the

architecture using an X-based configuration- tool. Second, the application- and architecture-specific

simulator -is compiled -and linked into an executable. Next, the user runs the executable to produce

screen- output and a trace file. Finally, PROTEUS includes a sophisticated X-based graph generator,

discussed in Section 5.4, that interprets the- trace file and presents the results of the simulation. 2

3 Modules

PROTEUS was designed-with a modular structure to simplify replacement and customization of specific

parts of the simulator. The modular structure provides two very important abilities. First, the structure

simplifies customizing the target architecture, it is very easy to experiment with part of the architecture

while keeping the rest unchanged. This makes PROTEUS useful for evaluating architectural design

decisions, and for simulating specific- multiprocessors. Second, the modular structure promotes multiple

implementations of a given module, which allows users to switch between very accurate versions and very

-fast versions. Users pay only for what they need; in particular, the high-performance versions greatly

reduce development time. This section describes the four most important modules, uses the network

module to demonstrate the effectiveness of the structure, and discusses the use of modules to tradeoff

acctwacy and- performance.

The operating system module provides a kernel operating system for the simulated multiprocessor.

2Al of the graihs in this paper were produced by PnoTvus' graph generator.
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The kernel interface specifies procedures for thread scheduling and management, memory management,

and interrupt and-trap handling. In addition to the kernel interrupt handlers, users may define their own

interprocessor interrupts (IPIs) and handlers, for example, user-defined IPIs are used to build dispatch

routines for message-passing architectures.

The shared-memory module provides access to local shared memory, handles full-empty bits [Smi81],

and provides atomic operations such as test-and-set and compare-and-swap. The shared memory of a

remote processor is not accessed directly via the shared-memory module, instead, a network request is

generated (usually by the cache module) that invokes the shared-memory module when it arrives at the

remote node. Separating the remote access into a network portion and a local-memory portion allows

the network and shared-memory modules to be replaced independently.

The cache module handles memory requests from the local processor and from the local network

chip. It generates calls to both the shared-memory module (for local accesses) and the network module

(for remote accesses). The primary operations provided by the cache module are read, write, and flush.

i- addition, the module defines operations for software coherence: soft read and write, and fence [P3S87].

The intent of the soft operations is to access the currently cached, possibly stale, data. The fence

operation blocks until all pending protocol transactions for the given cache line have completed and is

used to ensure coherence for that cache line.

The network module, described in detail in the next subsection, simulates the movement of data

within the interconnection medium.

3.1 The Network Module Interface

The network module is a good example of the modular structure of PROTEUS. It demonstrates the two

key advantages of PROTEUS' modular structure. the simplicity of customization and the use of multiple

versions to provide a range of a:curacy and performai.ce. The user must modify only three procedures to

replace the network module. The multiple versions, which are discussed in Section 3.2, provide orders of

magnitude performance differences depending on the required accuracy. Before discussing the network

module, a brief discussion of the simulator engine is in order.

Instructions that affect remote nodes are implemented using simulator requests, which are times-

tamped structures stored in a central priority queue. Such a non-local instruction generates a simulator

request and inserts it into the priority queue, which is sorted-by timestamp. The eng:ne repeatedly exe-

cuteb the request with the lowest timestamp until there are no requests left, at which time the simulation

is complete. Each request type has a associated procedure. the engine executes a request by calling the

associated procedure.

The network module uses three types of requests. The first is a send request, which signifies that the
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Request Generation Request Execution

void Send(from, to, time, packet, mode) void sendrequest-handler(SimRequest)

void Route(next, time, packet) void route-request-handler(SimRequest)

void-Receive(from, time, packet) void receive-request -handler(SimRequest)

Table 1: Interface for the network module.

processor is ready to send a packet to the network chip. The second type of request is the route request,

which computes the next node for a packet and computes the arrival time of the packet at -that node.

Some versions, such as a bus, do not use this request at all. The third type is the receive request, which

occurs when the packet reacles the target node. The receive request either interrupts the processor or

notifies the cache chip depending on the packet. Only the network module generates-route and receiv

requests; all other modules generate only send requests. Table-1 lists the procedures for generating and

executing network requests. New-versions of the network module only need to replace the procedures

for executing network requests.

Typically, the send request generates two requests: one to resume the processor at the appropriate

time and a route request to move- the packet to the next node or switch. If the network chip uses

DMA to get the packet, then the processor is resumed fairly quickly. Other architectures, such as the

J-machine [D+89], require that the-processor feed the packet-to the network chip word-by word. In this

case, the delay depends on the length of the packet. The mode argument is used to pass flags to the

module. At the moment, the only flag determines whether or not to interrupt the processor when the

DMA completes (assuming the network chip uses DMA).

The route request computes the node to which the packet should be forwarded. For example, in

a k-ary n-cube the route request determines which output channel to use, based on the target node,

the incoming channel, and possibly the contention on the output channels of the current node. It then

computes the arrival time of the packet at the next node, using the current time and information about

when the channel will be available. Only the route handler needs to know anything about channels and

contention. It the next node is the target, the route handler generates a receive request.

The receive request looks at the type of the packet, which is either a memory packet or an IPI packet.

Memory packets are handed to the cache module, which defines a procedure specifically for handling

network packets. An IPI packet causes an interrupt of the local processor.

For - specific architecture, it is common to provide additional procedures in the network module

that improve the accuracy of the module. For example, the network chip for the Alewife multiprocessor

provides a way to check if the chip-is busy. We added a procedure that returns true if the channel is
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busy; we set its cost to four cycles, -which-is the time-it would take to load and check the busy flag.

Using this structure, most- network changes, including routing algorithm and topology changes, re-

quire modifications to only the route request handler. Most detailed network modules are only a few

hundred lines total, and often much of the code can be inherited from existing network modules. The

nCUBE network module used-for the experiments described in Section 7 took- less than a day to imple-

ment.

3.2 Trading Accuracy for Performance

Depending on the end goals of a simulation, some modules may have to be very accurate while others

can be less accurate. For example, users studying scheduling require very accurate costs in the operating

systems module but may not need detailed network simulatioa. Furthermore, during development,

users generally prefer to avoid the lower performance of the most accurate modules. The ability to

replace modules provides a simple way to trade accuracy for performance: PRoTEUs provides both a

very accurate version of a module and a high-performance version with the same semantics but lower

accuracy.3 Currently, the network module and the cache module exploit this tradeoff.

The accurate version of the k-ary n-cube network module simulates the progress of each packet hop by

hop. This allows complete simulation of network contention, includinghot spots. It correctly simulates

uni- and bidirectional edges, end-around connections, internal switch delays, and virtual channels [DS87].

The high-performance version use3 an analytical model developed by Agarwal [Aga'1]. Instead'of

simulating each hop, it computes the arrival time at the target using a formula presented in the paper and

a contention factor based on a sliding.-window view of recent network traffic. This version is acceptable

when the traffic is mild. Although-the high-performance version has limited accuracy, it is more than

an order of magnitude faster than the exact version.

The analytical model used in the high-performance module produces incorrect arrival times both

..hen there are hot spots and when -there-is no contention at all. As an example of the latter, consider

a pipeline application that has high network traffic but no contention. The high traffic leads to a high

contention factor, even though none of the packets contend for an edge. Thus the model-based version

artificially inflates network delays when there is no contention. 4

The accurate cache modulesimulates Chiken's cache-coherence protocol for direct networks [Cha9O].

It simulates all of the cache states and protocol packets. The less accurate module simply provides

coherent shared me.,iory by not caching at all; it always goes over the network for remote memory

'Vcrsions with intcrmediatc performance and a.uxy arc possible. the cadic module current ly provides three versions.
4 Although casy to sec in hindsight, the inaccuracy at zcro contention was first noticcd in PRoTEus simulations, it was

a surprise cvcn to the author of the nodcl.
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Analytical Network Model Hop-by-hop Network

Uniform Cost 1,500,000 700,000

No Caching 1,000,000 400,000

Coherent Cache 500,000 - 120,000

Numbers are in simulated cycles per second.

Table 2: This table shows the relative system performance of the six combinations of network and cache
modules. The numbers are for the 8-queens application running on an 8x8 mesh. The simulations
were run on a DECstation 5000. These numbers vary quite a bit depending on the application and the
architecture, but-the relative magnitudes are typical.

accesses. Although this increases network traffic, the overall system performance improves substantially.

A third version runs even faster: it accesses global memory directly, that is, without using the network.'

It assigns all global memory accesses a single fixed cost. Note that all three versions have the same

semantics, the only difference is the cost of accesses.

Table 2 shows the relative system performance of the six combinations of cache and network modules

for an 8-queens application running on an 8x8 mesh. There is more than a ten-fold difference in perfor-

mance between the least and most accurate combinations. Most simulations achieve well over one million

simulated cycles per second, since the accuracy is usually not needed during application development.

In summary, the modular structure of PROTEUS allows easy replacement and customization of indi-

vidual parts of the simulator. This allows users to tailor PROTEUS to a particular architecture. We have

exploited this ability to reproduce both the nCUBE [FJL+88], a message-passing multiprocessor, and

Alewife (A+91], a shared-memory multiprocessor. (Section 7 describes the correspondence between the

nCUBE version of PROTEUS and the real nCUBE.) The modular structure also allows selection of mod-

ules based on required accuracy, which allows users to maximize performance for a particular simulation

by- trading unneeded accuracy for increased performance. In particular, users zan exploit more than a

ten-fold gain in performance during development by forfeiting detailed simulation of the network and

cache. Later, when their code is debugged, they can switch to more accurate modules without modifying

their code.

5This is possiblc bccausc PROTEUS runs in a single address spacc.
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4 Direct Execution

A primary factor in the performance of PROTEUS is the use of direct execution to provide very low-

overhead simulation of most instructions. The key idea is to execute local instructions directly and

augment the code with cycle-counting instructions to time .he code. This section presents an overview

of direct exectition with augmentation and discusses the flexiblity it provides and the assumptions it

requires.

PROTEUs directly executes local instructions. An instruction is local if it only affects the local

processor. For example, all register-to-register instructions are local instruc.&ons. An instruction that

might affect another part of the system is a non-local instruction. All shared-nttilory accesses and

network instructions are non-local. PROTEUS simulates local instructions by directly executing the

instruction on the host workstation; non-local instructions are simulated via a procedure call.

Although direct execution provides the correct functionality of local instructions, it ignores the

simulated time required to execute them. PROTEUS uses code augmentation to count the cycles required

by local instructions. For each basicblock of local instructions, code is added to increment a global cycle

counter by the number of cycles required to execute that block. Because the counter is incremented

every time a block executes, the counter correctly tracks the required cycles for any path through the

control-flow graph.

The use of direct execution with augmentation was used first by Mathieson and Francis [MF88] and

by Covington et al. [CMM+88]. The technique has been used in several other simulators [DGH91, Che89,

SF89]. We extend the work in this area in three ways. First, PROTEUS provides support for nonintrusive

monitoring, which is discussed in Section 5.1.

Second, profiling information, similar to the Unix tool prof [DECb], can be generated by using a

procedure-specific cycle counter in addition to the global cycle counter. This produces very accurate

counts of the simulated cycles spent in each procedure. Aa with prof, the profiling information guides

tuning and aids debugging. Unlike prof, which uses periodic sampling to collect profiing data, PROTEUS

profiling data is exact.

Third, we use augmentation to limit the number of cycles a single thread can execute without

returning control to the simulator engine. This limit, called the quanium, keeps processors close together

in simulated time. Normally, processors are kept close together simply because they perform non-

local instructions, which always return control to the engine. However, without the quantum, loops

containing only local instructions can cause a thread to get thousands of cycles ahead. This affects

arriving interrupts, which may get artificially delayed thousands of cycles. The quantum also prevents

infinite loops in user code from hindering debugging. since the simulator regularly regains control, the

user can enter debugging mode and easily determine which processors and which procedures are in
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Program Normal Cycles Augmented Cycles Overhead Factor

Queue 65,876,631 144,581,647 2.2

Sieve 52,483,384 130,868,590 2.5

augment 11,670,316 24,578,648 2.1

[ Minimum ASIM overhead 200

Table 3: Measuring the overhead of augmentation. This table compares several sequential programs
with and without augmentation. The cycles were determined by pixie [DECa], a profiling tool available
on MIPS-based workstations. The overhead factor is the ratio of the pixie cycle count for the aug-
mented version over that of the normal version. The overhead is consistently a small factor. ASIM is a
multiprocessor simulator developed for the Alewife project at MIT [A+91, CLN90]; it is representative
of instruction-interpreting simulators.

infinite loops.

The simulation overhead incurred by code augmentation is much lower than that incurred by in-

struction interpretation, which is used in most processor simulators. Table 3 shows the overhead due

to augmentation-for three sequential programs. As discussed by Davis et al. [DGI91], the overhead

for augmentation is about a factor of two, which is about one hundred times lower than the overhead

for instruction interpretation. Unfortunately, these numbers only apply for local instructions; non-local

instructions must still be interpreted. Thus the overall performance of PROTEUS, which is discussed in

Section 6, is rarely one hundred times faster than instruction-interpreting simulators.

The hundred-fold performance gain for local instructions does not come for free. Using direct execu-

tion with augmentation requires several assumptions that are not required by simulators that interpret

every instruction. First, because PROTEUS determines the cost of each basic block at compile time, the

cost of a block is a fixed number of cycles. In reality, the cost of an instruction depends on cache hits

and sometimes on the operands. Thus, we use the expected cost of the instruction, taking into account

both the expected number of cycles for the instruction and the expected delay due to cache misses. In

essence, we assume uniform cache hit rates for instructions and data in private memory. (Shared-memory

accesses are simulated in detail and thus avoid this assumption.) This assumption is reasonable because

uniprocessor cache hit rates are very high, and because small periodic errors in instruction costs rarely

affect overall simulation results.

A second and related assumption is that code and stacks reside in private memory. If code resides in

shared memory, PROTEUS must simulate the cache-coherence protocol for every instruction fetch, which

removes most of the performance benefit of direct execution. Likewise, if stacks reside in shared memory,
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every stack access must- be simulated-in detail, which again results in a severe loss -of performance.

Section 8 discusses future plans-regarding this assumption.

The errors due to these assumptions are- small and localized; in practice, they have had negligible

effect. Section 7 compares PROTEUS results-with those of-real multiprocessors;- for- these applications,

our assumptions are validated.

5 Monitoring and Debugging

In addition to performance, a primary asset of PROTEUS is its support for monitoring and debugging.

PROTEUS- provides nonintrusive monitoring and debugging: users can add monitoring code -that does

not affect the behavior or timing of the simulation. PROTEUS also provides repeatability: -users can

rerun simulations to pinpoint bugs. Real multiprocessors generally- provide neither of these abilities.

-Because- PROTEUS runs as a single process, it works well with sequential-debuggers such as dbx [Lin9O].

This- extends the power of advanced sequential debuggers -to the .parallel- development- arena. Further-

more, PROTEUS provides an internal debugging mode that allows users to examine the states of threads,

processors, locks, and memory. -Combining the PROTEUS debugger with a sequential debugger such as

dbx results in a very effective development environment.

PROTEUS also provides an integrated subsystem for data collection and display. Data collection is

supported by primitives for recording data to a trace -file and by user-defined- data types. Data display

is performed by an X-based graph program that uses a simple but powerful graph languagc to interpret

the trace file data.

This section examines PROTEUS' support for nonintrusive monitoring and discusses repeatability and

nondeterminism. It then-examines the primitives for data collection and concludes with a discussion of

the graph-generation program.

5.1 Nonintrusive Monitoring

Nonintrusive monitoring, combined with repeatability, greatly simplifies the development of concurrent

programs. Real multiprocessor systems suffer from the probe effect; the addition of monitoring code may

cause the monitored effect to disappear [Gai86]. This prevents programmers from collecting additional

data for debugging. PROTEUS allows users to add -arbitrary monitoring or debugging code without

changing the behavior of the-simulation.

For non-cycle-counted code, the addition is trivial. Since the cost of the code is not determined

by cycle counting, the monitoring code does not affect the cost, which ensures no change in behavior. 6

'The monitoring code may alter costs if desired,-but this is unusual since it could change the system behavior.
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Thus-for engine code and most architectural modules, the addition of nonintrusive monitoring code is

straightforward.

Adding nonintrusive code to cycle-counted code-can be more difficult. In this case, a simple addition

will change the behavior since the cost of the code increases. To resolvethis problem, PROTEUS- allows

users -to turn off cycle counting temporarily within cycle-counted code. Thus, a typical nonintrusive

addition would first turn off cycle counting, then add the extra code, and then turn on cycle counting.7

It is conceivable that even- with cycle counting turned off, the addition may change the behavior of

the application. This is because the additional code may affect the surrounding code indirectly. For

example, if the additional code uses several registers, the surrounding code may spill more registers than

the previous version. This would increase the cost and thus could change-the behavior of the system.

We-have rarely observed this problem in practice; the addition of monitoring code to cycle-counted

code has not caused the-effects being studied to disappear. Should it occur, however, it is-possible to

adjust the cost of the monitored code so that it matches the cost it had prior to the addition. PROTEUS

provides primitives for increasing and decreasing the cycle counter by a delta, so it is easy to subtract out

the extra cycles due to the monitoring code.' Section 8 discusses future work on nonintrusive monitoring.

5.2 Repeatability

Nonintrusive monitoring is only useful if the platform ensures repeatability: the whole point of nonin-

trusive monitoring is to allow repeatability in the presence of additional code. Repeatability is perhaps

the single most important feature of PROTEUS; its presence provides- a debugging environment that is

not available on real multiprocessor systems.

Nondeterministic systems, such as multiprocessors, rarely provide any form of repeatability; some

bugs may occur only once every ten thousand executions. For deterministic programs, such as PROTEUS,

repeatability is the rule rather than the exception. Thus, PROTEUS simply extends the repeatability

inherent in sequential programs to multiprocessor applications.

Given that PROTEUS is deterministic, it might seem reasonable to assume-that it can reproduce only

one of the many possible executions of a fundamentally nondeterministic application. In fact, however,

PROTEUS can reproduce multiple executions of a nondeterministic application, an ability unique to

PROTEUS among -multiprocessor simulators. The multiple executions arise because PROTEUS chooses

randomly between two requests with the same timestamp; PROTEUS views two such requests as a race

7 Turningon and off cycle countingis done with macros that allow nesting; it is legal to embed non-cycle-counted macros
into code that already has cycle counting turned off.

8The number of extra cycles can be determined by looking at the assembly code-or by printing out the cycle counter
With and without the change. Guessing a small number would probably work as well, since the cost only needs to be
accurate enough to prevent the monitored effect from disappcaring.
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condition. A pseudo-random number generator is used to -decide -the race condition; this provides the

determinism -required for repeatability. At the- same time, using pseudo-random numbers implies that

changing the seed changes the outcome of some of the race conditions and -thus -leads to a different

execution of the same nondeterministic application.

For most applications, the ability to- reproduce multiple executions is not critical. However, some

applications, such as concurrent branch-and-bound search algorithms, cxhiluit vastly different be'avior

depending on the outcome of race conditions. In the case of a concurrent search algorithm, the ability

to investigate multiple executions allows a researcher to collect a distribution of execution times, which

provides a much more accurate view of the effectiveness of the algorithm. As expected, some PROTEUS

applications exhibit a wide distribution of execution times when the random number seed is varied.

5.3 Data Collection

The ability to collect exactly the desired data greatly -enhances the usefulness -of simulaton. PROTEUS

provides a framework for generating trace file data that allows users to generate their own data in

addition-to the statistics collected-by the engine and the modules.

The simulator uses two basic kinds of data, time-dependent and time-independent. The time-

dependent data records, called events, include a value, an index, and a timestamp. For example, a

concurrency graph can be generated using events: each point is an event consisting of the number of

busy processors and the timestamp. 9 Any graph that plots something versus time uses events. The

index field is used when generating data for a set of event versus time- graphs; Figure 2 is an example.

Time-independent data records, called metrics, summarize one aspect of a simulation with a single

value. For example, the execution time is a metric. An array metric is simply an array of-metrics.

Processor utilization graphs, for example, use an array metric with one metric for each processor. Metrics

are often used to compare the results of several simulations. For example,-the nCUBE graphs in Section 7

plot execution time versus the number of processors; each point is a metric from one simulation.

In addition to several predefined data types, users can define their own event types-and metrics. The

interpretation of user data is specified in a simple graph language used by the graph generator. User-

defined data types allow researchers to generate high-quality application-specific graphs in very little

time. Typically, it takes only a few minutes to define a new event -type and specify the interpretation

using the graph language.

°In practice, we use two events for concurrency graphs, one that indicates a processor became busy and a second that
indicates a processor became idle. The index field contains the processor number. This allows us to determine exactly
which processors are busy; recording the count dircctly hides this information.
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Map state.map { "Compute" 0, "Send" i, "Receive" 2 }

ArrayGraph state (p, 0, NO_0FYPROCESSORS - i) {
menu <- "Processor State", ; name in menu
usemap <- state-map, ; name-value map
x-axis <- "Time', ; x-axis label
y-axis <- "Processor", ; y-axis label
action {

EV.STATE: VALUE(p) ; use the value of events with index p}-

Figure 1: Graph specification for a processor state graph. The Map statement defines a set of name-value
pairs. The ArrayGraph keyword indicates that this is an array of event versus time graphs: the local
variable p iterates over the valid processor numbers, and the resulting graph has one timeline for each
processor. The action clause says to ignore all but EV.STATE events; the VALUE action sets the y value
to the value of the event. The "(p)" notation indicates that the-index field of the event must match the
current value of p, so that only events from the relevant processor affect the timeline for this iteration.
A graph with this specification appears in Figure 2.

5.4 Graphics

PROTEUS provides integrated graphics capabilities that are not available with comparable simulators

and are often not available with real multiprocessors. PROTEUS' graphics capabilities make it simple to

evaluate algorithms and architectures: users can quickly create graphs that answer their key questions

and provide new insight. The key is a simple but powerful graph-specification language that tells the

graph generator how to interpret the trace file.

The data for the graphs comes from the events and metrics stored in the'trace file. An individual

graph specification gives meaning to the events-and metrics by determining which events and metrics

are relevant and by specifying how to build a graph from the relevant elements. Figure 1 shows a typical

graph specification. Like most graph specifications it is simple and very short.

The graph generator produces line graphs,-bar graphs, and tables, and can-combine multiple graphs

onto the same -axes. It can also -merge data from multiple simulations; this simplifies comparison of an

algorithm across a range of architectures, machine sizes, or other architectural parameter. The generator

uses the X Window system and- can produce PostScript hardcopy. It can also produce PostScript files

for inclusion in documents such as this paper.

We have found the ability to create new graphs quickly to be an excellent debugging aid. The

most effective approach is to graph the state of each processor versus time and then combine all of

the timelines into one graph. Defining new event types, adding the data collection statements, and
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Figure 2. This graph shows the state of four processors in a pipeline scarch tree application [CBDW91].
The state graph is generally periodic, the width of the period reveals the throughput of the pipeline. A
single operation has a "slkpe" of about 60 degrces from the positive time axis. the pipeline latency can
be measured directly from this slope. More importantly, this graph rcveals that this particular algorithm
is spending all of its time performing communication. very little of the graph is white. A change to
buffered asynchronous message passing resolved this problem.

specifying the graph typically require a total of about ten minutes. Man interesting effects are visible

on these graphs including livelock and deadlock. Excessive lock- holdiaig times arc readily apparent, as

are violations of mutual exclusion. In addition to debugging, thes,& graphs are usefu' for program tuning

since they indicate how long different states last. Figure 2 shows one of these graphs.

The data collection and display subsystem gives PROTEUS a uadsual level of effectiveness. Users

can collect and display the data they need to answer their questions. The support 'or user-defined data

collection and user-specified graphs give users of PRoTEUs full access to the insight available through

simulation.

6 Performance

PROTEUS substantially outperforms comparable multiprocesbur bimulators. By providing one to two

orders of magnitude improvement in perfornianie, PitOEuS allvws researchers to investigate applica-

tions and machine sizes prohibited by the perfurmance of other zimulators. Table 4 summarizes the

performance of three multiprocessor simulators.
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Program Slowdown Per Processor

Simulator Best Typical

PROTEUS 2 35-100

ASIM 200 1,000-5,000

Tang2 500-2,000

Table 4: Overall system performance for severa multiprocessor simulators.

The ASIM simulator [CLN90], which was developed for the Alewife project at MIT, is a fairly

representative- instruction-interpreting simulator. The overhead of instruction interpretation is reflected

in the "Best" column of Table 4, and limits the typical performance substantially.

Tango [DGI.91] is very similar to PROTEUS in its use of-direct execution with augmentation. Thas,

its peak performance has an overhead factor of about two. The typical performance, however, is far-

worce than that of PROTEUS. This seems surprising, since Tango has similar overhead for augmentation.

In practice, augmentation overhead is an insignificant part of simulation overhead; simulating non-local

instructions and-context switching dominate the cost of simulation. It is in these areas that Pn.OTnS

outperforms Tango.

Tango uses Unix processes for each simulated thread, which re.ults in a context switch time of 180

to 250 microseconds according to the authors. PROTEUS -uses a custom lightveight-threads package

that provides context-switching times of about 3 microseconds. Even withlightweight threads, context

switching accounts for several percent of the total running time; thus, using Unix processes would greatly

-reduce the performance of PROTEUS.10

PROTEus'-lightweight threads exploit "partial" context switches if the switch occurs at a procedure

call boundary. Invariants hold at procedure boundaries that limit the amount of-context that must be

saved. Because we use procedures to imPlement non-local instructions, it is quite common to switch at

procedure call boundaries; typically, 98% of all context sw*.:yb"- nvolve the iinited context. 1

Tango uses Unix semaphores for synchronization, which further lir "- performanc The semaphores

used in PROTEUS are significantly faster. In addition, PROTFUS simulates spinning by internally blocking

the spinning thread, but still generating the correct network tra.[,. This allows PROTEUS to simulate

spinlock contention without suffering from contention delays iself. Tango-performance drops an order

10The authors of Tango are developing a version that uses lightweight threads; its performance should-b, much more
competitive.

S1 Because of the different size contexts, we musi -ave the size ol the context,-to avoid excess copying when the context
is restored.
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of magnitude in the presence ofihigh contention.

There are-also indirect-performance benefits from running in a single address space, such as reduced

memory requirements and-direct access to ail-parts of the simulator. In particular, the global priority

queue, which-is accessed for every-non-local operation, has a tuned implementation that provides access

speed that would not be possible-with multiple Uni,-, ,-ocesses.

All of these decisions combine to give PROTF s - of-performance that is consistentiy at -least

an order of- magnitude-faster than other x et, *. .. , -iators. During application development,

the performance is-typically two-orders-of magni.-1 ! Jter due to the performanc?, accuracy tradeoff

provided by PROTEUS' modular structure.

-7 Validation

This section compares PROTEUS' results wi", published _e.ults from a real multiprocessor. If the simu-

lator produces valid data, then its results should match those of the real multiprocessor. We have ised

published results to validate PROTEUS several times; her,- we reproduce results -from a comparison of

sorting algorithms on- an nCUBE-multiprocessor.

The nCUBE is a message-passing multiprocessor with a hypercube topoley; that is, there are

processors with each processor connected to n other processors. Communicatic i is in the style of

CSP-[Hoa85]: every send must have a matching receive. The primitivez transfer data blocks via DMA

over the network to the target prooe ssor. There is no cache coherence.

The algorithm comparison com,.,4 from Quinn's paper "Analysis and Benchmarking of Two Parallel

Sorting Algorithms: Hyperquicksort and Quickmerge" [Qui89]. Quinn compares two sorting algorithms

on a 64-processor nCUBE/7. Both algorithms mix local sorting with communication; they differ in-their

strategieb for dividing-the values among the processors. In general, quickmerge requires-fewer but-larger

messages than hyperquicksort.

Figure 3 graphs Quinn's hyperquicksort times along with times for the nCUBE version of PROTEUS

and a verion with a generic network module. The nCUBE version provides procedures that implement

the nCUBE communication primitives and uses costs adjusted to reflect the actual communication costs

of the nCUBE, which are much higher than those assumed by the generic network module.12

Since we use -direct execution, all of the local sorting compiled to MIPS code, not nCUBE code.

The differences in local instructions an tompileis implie3 that we must scale PROTEUS cycle counts to

correspond to nCUBE seconds. _or the hyperquicksort graph, we simply picked -tbe-. aling f?t.,:,r that

'2Thanks to David Culler at the University of California at Berkeley for providing nCUBE timing da' a.



18 7 VALIDATION

2.4 ........ ... ......... .........................................................

2.2

-1.4

. ..................
.2
.4. .........0. ..... ............................

.............. .i... ....
- Hype........o.

.2- .B Proeu .yp.......o .

F-Qin yeqigusre :Hprucst ie

provided tbe-best match;-thus, for-hyperquicksort (only-) the match between Quinn's data dud-our data

is deceptively good.

The scaling factor, however, should be inde ',identofthe -application, so we used the suo scaling

factor for quickmerge. Figure 4-graphs Quinn,, results afl&PtoTEUs' results for quickme;- The key

point is that although -the hyperquicksort data has-been scaled to fit, the quickmerge. data has ni,. -~e

first establiehed the ratio-of PROTEUS Cycles to nOUBE secmiids, ilien we ran the quickmerge simulations.

The fact that the quickrnerge data matches Quinn's-data well -validates both the scaling factor and-the-

nCUBE versicr ofPROTMUS-as a whole. Figure 5 presents- a-differelit view of the quickmerge- data; the

data has-been ioamalized -to -Quinn's results so that the error in individual PROTEUS points is more

visible.

The nOUBE PRoT~us results match the-w :311lc ! ..,--ults extremely well, especially when comp ared-

to the- generic network -mod5ule. The -modifications for the nCUBE version took less than one day to

implement, but resulted -in substantially more accurate simulations -these facts confirm the importance

of the modular structure. Further refinements would improve the accuracy of the JICUBE version_: but

the first order modificationswere-sufficient to obtain results ccusistently within four percent.

Evidence for the accuracy Of PROTEUS comes- from -other sources as well. In our research on con-

cuient bearch trees rCBDW91], we-found that PROTEUS was able to reproduce published search tree
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results [CS90] that were measured on a Supernode multiprocessor [Nic88].,

PROTEUS also reproduced the results published in "Synchronization without Contention" by Mellor-

Crummey and Scott [MCS91]. This paper compared locking -algorithms on both- a -Sequent Symmetry

and a BBN Butterfly.

In general, any effect that we expected to see has actually appeared. More importantly, all unexpected

results have (so far) proven to be real effects -rather than inaccuracies introduced by PROTEUS. For

example, we noticed excessive communication problems -in -David Chaiken's cache-coherence protocol

that severely hindered performance [Cha90]. -In his -thesis, Chaiken predicted the possibility of cache

thrashing, but he did not know if it would be a problemin practice. The solutions he suggested resolved

our problem, confirming that the excessive communication was due to thrashing in the cache. The

thrashing problems and solutions were confirmed by-Chaiken's own simulations using ASIM [CLN90].

8 Related Work

Augmentation was first used to profile sequential programs by Weinberger [Wei84]; direct execution with

augmentation for multiprocessor simulation was developed by Mathieson and Francis for their Threads

simulator, and by Covington et al. for the Rice Parallel Processing Testbed (RPPT) (CMM+88], and is

used in-several simulators [DGHl, Che89, SF89]. Section 4 discusses our extensions to this work.

Among these simulators, only the RPPT provides substantial support for debugging. It provides some

form of "parallel debugger/tracer" that interprets and -controls the simulation. In contrast, PROTEUS

was designed to work well with sequential debuggers in addition to providing a debugging mode that

interprets the state of the simulation and allows single stepping. Debugging in PROTEUS is simple and

straightforward, primarily because we support sequential debugging techniques.

The support for integrated data collection and display is unique to PROTEUS among execution-driven

simulators, although Tango provides some form of general monitoring. The CARE simulator [DSNB87],

which simulates LISP code using direct execution and a hardware timer, provides integrated monitoring

and graphics. The TESS simulator [Sta85], a commercial discrete-event simulation system, provides very

general data collection and display abilities, but is not very useful for multiprocessor simulation.

The modular structure of PROTEUS extends the separation of functionality introduced by Tango.

In Tango, it is easy to replace the memory system simulator as a whole, but the cache, network, and

memory systems cannot be replaced independently. The RPPT provides several architectural models,

but does not seem to support customization or independent replacement.

The ability to trade accuracy for performance is exploited to a small extent by Tango, which provides

multiple versions of the memory system. PROTEUS makes this tradeoff a fundamental part of the
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simulator. It provides multiple implementations of modules, and also provides several parameters, such

as the quantum, that tradeoff accuracy and performance.

The ability of PROTEUS to reproduce published results provides a level-of confidence in simulation

results that is absent in published results about comparable simulators. The execution-driven simulation

literature -makes no attempt to reproduce results from real multiprocessors.

PROTEUS also extends the performance of execution-driven simulation by combining simulation and

analytical models. The use of Agarwal's network model as the base of-one of the network module-imple-

mentations provides more than an- order of magnitude increase in performance in network simulation.

Although simulation is always base2 on some model, our use-of analytical models is novel in that we

make no attempt to simulate what actually occurs in the network. Instead, we merely attempt-to com-

pute the correct costs for network operations. We believe that the explicit use of analytical models has

an important-place in the tradeoff between performance and-accuracy: when used within their limits

they provide tremendous performance and sufficient accuracy.

8.1 Future Work

One of the primary limitations of PROTEUS is the restrictic,. that code and stacks reside in private (local)

memory. This assumption prevents PROTEUS from-having to simulate cache effects for every instruction

fetch and stack access. Although removing this restriction would greatly reduce the performance of

PROTEUS, we would like to offer the increased accuracy as an option.

We would probably simulate the cache effects on a basic-block basis; that is, each block would be

augmented with calls that simulate the cache effects for the instruction fetches and stack accesses in

that block. The implementation is complicated-by the dynamic nature of the addresses: some of the

addresses cannot be determined statically.

We would also like to provide some form of virtual-memory simulation. Although most research

multiprocessors do not use virtual memory, many of the smaller commercial machines do.

Finally, we hope to implement fully nonintrusive debugging. As described in Section 5.1, there are

some cases in which the "nonintrusive" code indirectly affects the-monitored code, usually by changing

register allocation. We can eliminate these effects by automatically setting the cost of the monitored

code to its value before the monitoring was added. Thtis, the augmentation program would read the

previous version of the monitored code to obtain the correct costs, then it would adjust the cost of the

new version to be identical, which makes the monitoring code truly nonintrusive. Since the current

approach works most of the time, and users can adjust the costs themselves in the cases that fail, this

change has lower priority than the others.
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9 Conclusion

PROTEUS provides a unique combination of flexibility, -performance, and:accuracy. Its modular structure

-simplifies customization and independent replacement of individual parts of the simulator; this promotes

modules for particular architectures and multiple implementations that provide a variety of performance

and accuracy combinations. The division into independent modules also clarifies and simplifies each

module, which makes it easier to tune performance.

The overall performance of PROTEUS is typically an order of magnitude higher than comparable

simulators; this is due primarily to the use of direct execution, a high-performance lightweight-threads

package, and efficient simulation of synchronization. When the high-performance versions of modules

are- in use, which is typical during development, the system performance increases an additional order

of magnitude over other multiprocessor simulators.

The accurate versions of modules allow PROTEUS to reproduce published results; we have-performed

such validations several times in addition to the experiment described in Section 7. The validation

experiments provide a significantly increased level of confidence in PROTEUS' results. In general, every

effect that we expected to see has actually appeared, and every unexpected effect turned out to be real.

The primary use of PROTEUS so far has been the design and implementation of a portable parallel

language and runtime system. It has also been used for research on concurrent algorithms, operating

system network overhead, and fault tolerance. The fault tolerance application consists of roughly 10,000

lines and runs for hundreds of millions of cycles.

PROTE US provides several key features that make it an exceptional platform for research on parallel

systems:

Flexibility: PROTEUS can simulate a wide variety of MIMD multiprocessors, including both

shared-memory and -message-passing machines.

Performance: PROTEUS' performance allows simulation of applications and machine sizes

that are prohibited by other simulators.

Performance/Accuracy Tradeoff: By providing only the required accuracy, PROTEUS

maximizes performance; this allows exceptional performance during development since

users can simply switch to accurate modules when needed.

Repeatability: PROTEUS provides repeatability, which is critical to quality debugging, but

rarely available on real multiprocessors. It lets users rerun simulations until they have

pinpointed a problem.
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Nonintrusive Monitoring: To ensure repeatability despite the presence of additional mon-

itoring code, PROTEUS allows users to add nonintrusive monitoring code. This allows

users to gain more information without causing an effect of interest to disappear due to

changes in timing.

Use of Sequential Debuggers: PROTEUS is designed to work well with standard debuggers

such as dbx; this brings the power of advanced sequential debuggers to parallel software

development.

Data Collection: Users can collect exactly the data they need, including user-defined data

types.

Graphical Output: A simple but powerful graph-specification language allows users to cre-

ate application- or architecture-specific graphs quickly and easily.

Availability: PROTEUS allows parallel-systems research to take place on standard worksta-

tions, thus avoiding the cost and limitations of real multiprocessors.

We believe that these advantages will make PROTEUS (and tools like it) a fundamental part of

parallel-systems research-the flexibility and the ease of development are not available on real machines.

PROTEUS' high-quality development environment, combined with its flexibility, accuracy and perfor-

mance, produce not only a high-performance simulator, but a powerful tool for parallel research and

development in general.
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